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A B S T R A C T   

Affective brain-computer interfaces are a relatively new area of research in affective computing. Estimation of 
affective states can improve human-computer interaction as well as improve the care of people with severe 
disabilities. To assess the effectiveness of EEG recordings for recognizing affective states, we used data collected 
in our lab as well as the publicly available DEAP database. We also reviewed the articles that used the DEAP 
database and found that a significant number of articles did not consider the presence of the class imbalance in 
the DEAP. Failing to consider class imbalance creates misleading results. Further, ignoring class imbalance makes 
the comparison of the results between studies using different datasets impossible, since different datasets will 
have different class imbalances. Class imbalance also shifts the chance level, hence it is vital to consider class bias 
while determining if the results are above chance. To properly account for the effect of class imbalance, we 
suggest the use of balanced accuracy as a performance metric, and its posterior distribution for computing 
credible intervals. For classification, we used features from the literature as well as theta beta-1 ratio. Results 
from DEAP and our data suggest that the beta band power, theta band power, and theta beta-1 ratio are better 
feature sets for classifying valence, arousal, and dominance, respectively.   

1. Introduction 

The term affective [1] is a psychological concept referring to the 
experience of human emotion or feeling. Brain-computer interfaces 
(BCIs) are usually defined as a direct means of communication between 
the brain and external devices or systems which enable the brain signal 
to control some external activity [2]. Yet BCIs also allow investigation of 
brain activity and analysis of brain state. Affective Brain-Computer In
terfaces (aBCIs) can be defined as systems that estimate human affect 
from brain signals. The interest in automatic detection of people’s af
fective states has increased over the last few decades. Studies have 
shown that affective states play an important role in human decision 
making [3]. The ability to manage one’s affective states is also related to 
the abilities of logical reasoning, learning and extracting important in
formation [4]. According to Goleman’s model of emotional intelligence, 
having knowledge of your own affective states is a key factor behind 
personal and professional success [5]. 

However, estimation of the affective state is a difficult task for 
several reasons. Human subjects do not always reveal their true 

emotions, and often inflate their degree of happiness or satisfaction in 
self-reports [6]. Additionally, there is some ambiguity in understanding 
and defining affective states [7]. 

Facial expression analysis is one of the most popular methods for 
estimating affective states [8], but it is possible to deliberately fake 
facial expressions unrelated to one’s true affective state. Therefore, as 
Picard argued, the estimation may have a high error rate if someone has 
the ability to disguise his or her emotion [7]. 

Nevertheless, there is a growing interest in relationships between 
affective states and brain activities. Investigating affective states using 
electroencephalography (EEG) is becoming popular among researchers 
because EEG is one of the most convenient, non-invasive forms of 
recording brain activity. EEG also has high temporal resolution, which 
makes it a preferable candidate for fast affective state estimation [9]. 
Before using EEG-based BCIs to estimate affective states, one major 
challenge is to model affective states in a measurable and understand
able scale. A current, widely accepted affective state model is the cir
cumplex model of affect (Fig. 1), which was initially proposed by J. A. 
Russel [10]. Finding distinct physiological patterns for each affective 
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state has also always been a major topic of interest for affective 
computing researchers [11]. Picard argued that emotion consists of 
more complex, underlying processes rather than outward physiological 
expression [7]. 

Interest in EEG-based emotion recognition has increased over time 
and is still growing. Searching “EEG emotion recognition” in Google 
scholar gave 115,000 results as of March 2020. Of these, 2100 were 
published just in the first quarter of 2020. Because these projects rely on 
individuals’ emotional responses, the distribution of affective states 
(classes) is often uneven. However, most of these articles do not mention 
the class imbalance percentage, instead using only classification accu
racy as a performance measuring metric. This practice creates a serious 
ambiguity and makes the results incomparable between different 
studies. For example, a publicly available database for emotion recog
nition known as the DEAP database [12] had been cited over 1600 times 
as of March 2020, and using the search keywords “EEG emotion 
recognition” within the DEAP-citing articles gave more than 1330 re
sults. Out of those 1330 articles, at least 170 articles included the DEAP 
dataset in their analysis. Out of those 170 articles, only approximately 
33 articles [13–47] mentioned or considered class imbalance. Classifi
cation accuracy, without considering class imbalance, is misleading for 
reasons we will present in this paper. Additionally, out of those 170 
articles, only approximately 30 articles [13,15,18,19,23–25,27,32, 
47–56] discussed statistical significance. To us, these issues raised a few 
serious research questions:  

1. Are the classification accuracies in these studies better than what 
could be achieved with unskilled classifiers?  

2. If not, can it be said that these accuracies are significantly better than 
chance?  

3. In the presence of class imbalance, what is the correct chance level?  
4. What performance evaluation metric should be used in affect 

classification? 

To investigate these questions, we present a case study of EEG-based 
detection of binary (high/low) valence, arousal, and dominance in 
response to different sets of stimuli. We use both our own data as well as 
the previously mentioned, publicly available DEAP database [12]. 

Affective states can be elicited through visual [57], auditory [58], 
and audio-visual stimuli [59], among other methods. The emotional 
experience is more profound when visual presentations are combined 
with auditory stimuli, intermediate under visual stimuli and minimal 
during auditory stimuli [60]. In our experiment, we used visual stimuli, 
the International Affective Picture System (IAPS) [57], to evoke emo
tions. The DEAP database used audio-visual stimuli. 

2. Related work 

A large number of studies have been conducted on emotion recog
nition using EEG signals. With the improvement of dry electrodes, EEG is 
nearing or at the point of being a practical, out of the lab solution for 
affect recognition. More detailed EEG-based emotion recognition re
views can be found in Ref. [61,62]. One major problem in EEG-based 
emotion recognition research is the lack of publicly available datasets. 
Consequently, researchers use their own data and as a result studies 
become more difficult to compare. To solve this problem, a few re
searchers developed publicly available datasets including the DEAP 
[12], USTC-ERVS [63] and MAHNOB-HCI datasets [64]. Among these 
datasets, the DEAP is the most cited and used for emotion recognition. 
Thus, we were motivated to use the DEAP dataset in this work. 

Studies where DEAP was used as the benchmark dataset mostly used 
support vector machine (SVM) [17,18,21,23,26,65,66] for classifica
tion. The second most-used classification technique was the k-nearest 
neighbor (kNN) classifier [17,21,65]. Other classification techniques, 
such as deep convolutional neural network [67], decision tree [50], 
linear discriminate analysis (LDA) [68], logistic regression [65], 
discriminative graph regularized extreme learning machine (GELM) 

Fig. 1. An example of the circumplex model where emotions are expressed in the valence and arousal dimensions. Valence refers to how pleasant or unpleasant an 
emotion is, and arousal refers to how exciting or boring it is. Words are placed according to direct circular scaling coordinates for 28 affect words from Russel’s 
article [10]. 
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[65], back-propagation neural networks (BPNN) [51], probabilistic 
neural networks (PNN) [51], and multilayer perceptron (MLP) [66] 
have also been used to classify emotion on the DEAP dataset. Features 
used in these studies are statistical features: mean, standard deviation, 
variance, zero crossing rate [52,66,69,70], Hjorth parameters [26,71], 
fractal dimension [52,72], Shannon entropy [52], spectral entropy [52, 
66], kurtosis [73], skewness [13], different EEG band powers [69,74], 
relative power spectral density (PSD) for delta, theta, alpha, beta and 
gamma frequency bands [15], differential entropy (DE), differential 
asymmetry (DASM), rational asymmetry (RASM), asymmetry (ASM) 
[65], wavelet coefficients [17], and higher order crossings (HOC) [21]. 

In the DEAP dataset, emotions are expressed in valence, arousal, and 
dominance dimensions on discrete 9-point scales. To design the classi
fication model, those scales need to be labeled. Here also, in
consistencies exist between different studies. Not only are different 
numbers of classes chosen by different groups, but even within studies 
using the same number of classes, the thresholds are different. In these 
previously mentioned studies on the DEAP, classification labels were 
created by splitting the ratings into 3-class (1–3:negative, 4–6:neutral, 
and 7–9:positive) [75], 3-class (1–4.5:negative, 4.5–5.5:neutral, 5.5–9: 
positive) [66], 2-class (High/low, 4.5–9: high) [16], 2-class (negative: 
ratings ≤ 5, positive: ratings > 5) [15], 2-class (negative: ratings < 5, 
positive: ratings ≥ 5) [14,18,19], and 2-class (1–3: low and 7–9: high) 
[70]. Hence, the class imbalance in all these studies are different, based 
on their individual approaches to generating class labels. 

Even though all the above-mentioned studies used the DEAP dataset, 
where significant class imbalance exists, very few studies have consid
ered class imbalance while reporting results. Studies where class 
imbalance was considered mainly reported the F1 score [12,14,23,27, 
50]. A few other studies used receiver operating characteristic (ROC) 
[21,70], area under ROC (AUC) [26] and balanced accuracy [24] along 
with the most common metric: accuracy. But AUC can be a misleading 
metric for a comparative study, especially in the presence of variable 
class imbalance [76]. Computing the F1 score for multiclass classifica
tion is also not straightforward, because F1 can be computed using 
macro-averaging or micro-averaging [77]. The difference between 
macro- and micro-averaged F1 can be large; if studies do not report 
which was used then comparing results is impossible. For example [19], 
reported classification accuracies of 67% and 69% and F1 scores of 0.67 
and 0.69 for valence and arousal, respectively. It is not clear whether 
macro- or micro-averaging was used, or if F1 scores were even calcu
lated for both classes. Thus, any comparison between that study and 
others may lead to false conclusions. 

To eliminate these above-mentioned problems, we are suggesting the 
field adopt balanced accuracy as the classification performance evalu
ation metric in high/low valence, arousal and dominance classification. 
To our knowledge, this has only been used in Ref. [24]. However, that 
study did not consider the lower bound of the credible intervals for 
balanced accuracy; here we will further discuss using the posterior 
distribution of balanced accuracy to compute credible intervals and 
perform statistical significance testing. 

3. Data description 

We have used data from the publicly available DEAP dataset and EEG 
recordings from our lab. 

3.1. Database for emotion analysis using physiological signals (DEAP) 

The DEAP is a publicly available, multimodal dataset consisting of 
32-channel EEG, electrooculography (EOG), electromyography (EMG), 
galvanic skin response, respiration, plethysmograph, and temperature 
data [12]. We will only use EEG recordings for the classification task. 
These signals were collected from thirty-two healthy participants, with 
an equal male-female ratio and an average age of 24.9 years. Data were 
recorded at a sampling rate of 512Hz and then pre-processed. 

Minute-long music videos were used as emotional stimuli. After each 
video, participants were provided enough time to rate those videos for 
valence, arousal, and dominance on a discrete 9-point scale using self- 
assessment manikins (SAM) [78]. Each participant viewed forty videos. 

3.2. Data collected at brain and body sensing (BBS) lab 

The BCI2000 [79] system was used to present picture stimuli to the 
participants. Each picture was displayed for 6.7 s, followed by a 20.8s 
pause for participants’ self-report. A total of 244 pictures were selected 
from IAPS [57] images; the average valence and arousal ratings reported 
in the IAPS manual of the selected pictures are shown in Fig. 2. Pictures 
were presented in six blocks, with breaks for participant comfort. EEG 
data were recorded using a Cognionics Mobile-72 EEG system with a 
sampling frequency of 600Hz. Cognionics Mobile-72 EEG system is a 
high-density 64 channel EEG system with active Ag/AgCl electrodes. 
Reference and ground were on the right and left mastoids, respectively. 

In total, we had nine participants. Data from two participants have 
been excluded due to one data entry error and one battery failure. All 
participants were healthy college students with an age range of 21–22 
years. Each participant was shown 244 pictures through two or three 
different sessions (i.e., visits). Most participants performed one session 
per day. However, a few participants performed multiple sessions on the 
same day (e.g., one session in the morning and one in the evening of the 
same day). Each participant rated each stimulus for valence, arousal, 
and dominance on a discrete 5-point scale using self-assessment mani
kins (SAM) [78]. 

3.3. Pre-processing 

For the DEAP, both raw and pre-processed data are available for use. 
We used the MATLAB-ready preprocessed version of the data. The pre- 
processing steps were common-average referencing, down-sampling to 
128Hz, band-pass filtering with cut-off frequencies of (4.0 − 45.0) Hz, 
and eye blink artifact removal via independent component analysis. We 
then transformed data using scalp surface Laplacian or current-source 
density (CSD) because it has been argued that CSD transformation 
gives a more sensitive index of individual variations in frontal asym
metry than other EEG recording montages and also helps to reduce non- 
frontal contributions to frontal asymmetry [80,81]. 

The data collected at the BBS lab was filtered using a finite impulse 
response (FIR) bandpass filter with corners at (4.0 − 45.0) Hz. Data were 
then transformed into scalp surface Laplacian or current-source density 
(CSD) using the CSD toolbox [82] which provides a MATLAB imple
mentation and uses the spherical spline algorithm [83]. 

4. Methods 

Let x(t) ∈ R T be the time series of a recording from a single electrode 
with N samples. The first and second derivatives of x(t) with respect to 
time are x′

(t) and x′′(t), respectively. Standard deviation of x(t), x′

(t) and 
x′′(t) are denoted as σx, σd, and σdd, respectively. Class labels are denoted 
by c ∈ {1,2,…,C} and predicted class labels are denoted by y when 
classifying. H denotes entropy. 

4.1. Feature sets 

4.1.1. Frequency domain features 
Power spectral density and signal power at different frequency bands 

are popular features for EEG-based affective state classification and have 
been used as features in several studies [84,85]. Spectral density and 
band powers can be computed using various algorithms, including Fast 
Fourier Transform, short-Time Fourier Transform, or Welch’s power 
spectral density estimation algorithm. We used Welch’s power spectral 
density (PSD) estimation method [86] and then computed power in each 
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band from the resulting PSD. The frequency ranges used for EEG bands 
varies slightly between different studies. In our analysis, the frequency 
ranges were theta: (4–8) Hz, alpha: (8–12) Hz, Beta-1: (12–18) Hz, 
Beta-2: (18–30) Hz, and Gamma: (31–63) Hz. 

It has been argued that frontal EEG asymmetry can be a moderator 
and mediator of affective state [87,88]. By contrast, frontal alpha 
asymmetry is mostly used as a discriminator between depressed and 
healthy individuals [89], though it also can be used for affective state 
classification. Here, we will use both frontal EEG asymmetry and frontal 
alpha asymmetry (8–12 Hz) as features for classifying affective states. If 
Rp represents the signal power of electrodes located at the right frontal 
lobe and Lp represents the signal power of electrodes located at the left 
frontal lobe, then frontal EEG asymmetry can be calculated from 

Frontal ​ asymmetry= ln
(

Rp

Lp

)

(1) 

Another form of the frontal asymmetry is the normalized version of 
equation (1) and is written as 

Frontal ​ asymmetry= ln
(

Rp − Lp

Rp + Lp

)

(2) 

We used equation (1) to find the frontal asymmetry. We computed 
both the frontal asymmetry index (FAI) over 0 − 64Hz and frontal alpha 
asymmetry index (FAAI) over the alpha band. Since the DEAP data was 
bandpass filtered using corner frequencies of 4 Hz and 45 Hz, we used 
the same band on our own data for consistency. Those filters would have 
reduced some frequencies in the range of calculations, but the effect of 
the reduction is consistent in all datafiles. FAI and FAAI were computed 
using the following symmetric pairs of electrodes: Fp1-Fp2, AF3-AF4, 
F3–F4, F7–F8, FC5-FC6, FC1-FC2. 

We also used frontal theta-beta ratios (TBR) as frequency domain 
features. TBR has not been used previously for affective classification, 
but it has been reported to be related with affective traits [90]. To 
compute the frontal TBR we used equation (3) 

TBR= ln
(

θp

βp

)

(3)  

where θp represents the theta band power and βp represents the beta 
band power of electrodes located over the frontal lobe. Frequency ranges 
for beta-1 and beta-2 were used in βp to compute TBR1 and TBR2, 
respectively. TBR1 and TBR2 are computed for each frontal electrode 

(Fp1, Fp2, AF3, AF4, F3, F4, F7, F8, FC5, FC6, FC1, FC2). 

4.1.2. Hjorth parameters 
Hjorth parameters are time-domain features of EEG recordings, 

proposed by Bo Hjorth [91]. Hjorth parameters have been recently used 
in several studies [71,85] as features for affective state estimation. The 
parameters are Activity, Mobility, and Complexity. Activity is simply the 
variance of the time signal. If the signal is denoted as x(t), then Activity 
= σ2

x and is the measure of the squared standard deviation of amplitudes. 
Mobility measures the standard deviation of the slope with respect to the 
standard deviation of the amplitude. Mobility is defined as the square 
root of the ratio between the variances of the first derivative and the 
time signal. Complexity is a measure of how much the time signal de
viates from a pure sine shape and is defined as the ratio between the 
mobility of the first derivative of the time signal and the mobility of the 
time signal. 

Mobility=
σd

σx  

Complexity=
σdd/σd

σd/σx 

We used mobility and complexity as features. For each trial, there 
was one value for mobility and complexity values for each EEG 
electrode. 

4.1.3. Entropy 
Entropy is a measure of disorder in a system. In the case of EEG, 

entropy measures the irregularity in the signal. Spectral entropy of EEG 
recordings has been used to discriminate different affective states in 
other studies [92] and it recently has been used in recognition of 
emotional states [65]. We used spectral entropy (SE), which is the 
normalized Shannon entropy of the power spectrum. 

Spectral ​ Entropy= −

∑N
i=1p(X = i)log2p(X = i)

log2N
(4)  

where X denotes the power spectrum of the time series x(t), p(X) is the 
spectral distribution such that 

∑N
i=1p(X = i) = 1, and N is the number of 

frequency bins. 

Fig. 2. Visualization of average valence and arousal ratings (from the IAPS manual) [57] of the pictures used to collect data at the BBS lab.  
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4.1.4. Feature sets 
For valence, arousal and dominance classification we used seventeen 

different feature sets: frontal asymmetry index (FAI), frontal alpha 
asymmetry index (FAAI), theta beta-1 ratio (TBR1), theta beta-2 ratio 
(TBR2), theta band power (ThetaP), alpha band power (AlphaP), beta 
band power (BetaP), gamma band power (GammaP), TBR1 and TBR2 
together (TBR-C), theta, alpha, beta and gamma band power all together 
(TABG), Hjorth parameters (Hjorth), entropy (Entropy), power spectral 
density (PSD), beta alpha ratio (BARatio), all feature sets mentioned 
previously together (All), and principal components of all feature sets 
(All-PCA). For All-PCA, we used the principal components which con
tained 98% of total variability. These different feature sets, used with 
each of 32 participants, resulted in 17 × 32 classification results, in each 
affective dimension, for each classifier. 

4.2. Classification 

The ultimate goal for emotion estimation is a many-class classifica
tion or continuous-output regression. However, for this initial investi
gation, we focused on the easier binary classification problem, following 
multiple literature examples [14–16,18,19,70]. Thus, we used a 
two-class classification system for each of valence, arousal, and domi
nance. Participants in our experiments rated each axis from 1 to 5; we 
labeled ratings < 3 as low valence, arousal, and dominance and ratings ≥
3 as high valence, arousal, and dominance. One participant never rated 
arousal less than 3, so for this participant (number 6) we shifted the split 
point from 3 to 4. In the DEAP database, participants rated each axis 
from 1 to 9; we labeled ratings < 5 as low and ratings ≥ 5 as high, 
following several studies including the original work [12,24,52,93]. 

We used both support vector machine (SVM) with a Gaussian/RBF 
kernel, and K-nearest neighbor (kNN) classifiers. These classifiers are the 
most commonly used techniques among published reports using the 
DEAP dataset (e.g. Ref. [15,17,21,24,52,66,70,93]. We then confirmed 
the selection through an initial test with the classification learner app in 
MATLAB and a 70% train set, 15% validation set, and 15% test set 
strategy. Multiple kernel functions (i.e., linear, quadratic, cubic, RBF) 
for SVM classifiers, with auto-kernel scale parameter selection, were 
tested using the above-mentioned partition strategy for two participants. 
Similarly, for the kNN classifier, we chose the ‘K’-value (K values were 
tested from 1 to 15) using the above-mentioned partition strategy and 
dataset. Once the classifier models and parameters were selected, we 
used cross-validation to estimate accuracy for each method on the full 
dataset. For the DEAP data, we used Leave-One-Out cross-validation to 
match the predominant approach in the literature [12,16,23,24]. For 
our own data, which had more than six times the number of examples in 
the DEAP, we used 10-fold cross-validation. 

4.2.1. Support vector machines (SVMs) 
SVM uses a kernel trick and a separating hyperplane to classify new 

observations using support vectors from the training data. SVMs can be 
used for both regression and classification. In SVMs, with the observa
tion vector x the predicted class label can be found using [94]. 

f̂ (x)= sgn

(

ŵ0 +
∑N

i=1
αik(xi, x)

)

(5)  

Where αi = λiyi, λ is the ℓ1 regularization term and k(xi, x) is the kernel 
function. For Gaussian kernel SVM, the kernel function is defined by 

k(xi, x)= exp
(

−
1
2
(xi − x)T Σ− 1(xi − x)

)

(6) 

For implementation, we used the MATLAB built-in function fitcsvm 
for SVM with a Gaussian kernel. 

4.2.2. K-nearest neighbours (KNN) 
kNN is a simple classification algorithm where an example is clas

sified based on the plurality vote of its k nearest neighbours. The nearest 
neighbours are chosen by a distance metric. Various metrics exist, 
including City block distance, Chebychev distance, Minkowski distance, 
Euclidean distance or Mahalanobis distance. We used the built-in 
MATLAB function knn search with k = 9 using Euclidean distance. 

5. Performance metrics 

The most commonly used classification performance measurement 
metric is accuracy. Nevertheless, accuracy can be misleading, especially 
with the presence of class imbalance. In these situations, classifiers can 
learn from class label proportion rather than the features, a property 
sometimes known as “unskilled classification.” In biased datasets, the 
unskilled performance is equal to the class imbalance. Thus, the same 
reported accuracy should be interpreted differently based on class bias. 
For example, consider a study reporting 80% accuracy in a two-class 
classification. This may be good performance on a balanced dataset 
but is at or below unskilled classification levels for biases ≥ 80%. 

Comparing the performance of a similar classification task with 
different proportions of class labels is difficult. To make this kind of 
comparison meaningful, researchers suggest using other performance 
measuring metrics such as the Kappa statistic or area under the ROC 
curve (AUC) for imbalanced data. But since the multiclass ROC curve 
analysis is not well developed [95], AUC is not recommended for mul
ticlass problems [96]. Moreover, the accuracy metric is the most widely 
used, and the most intuitive solution would be to make the accuracy 
metric meaningful by scaling down the baseline to be the performance of 
an unskilled classifier. One way to scale the baseline is to compute the 
balanced accuracy [97] where the accuracy in each class is considered 
separately. 

5.1. Balanced accuracy 

If there are m number of classes, the balanced accuracy [97] is 
defined as 

Balanced Accuracy=
1
m

∑m

k=1

Ckk

nk
(7) 

Here, nk is the total number of observations in class k and Ckk is the 
number of correctly classified observations in that same class label. 

Since our focus is on two-class classification, here, m = 2. If the 
classifier performs equally well on both classes, then the balanced ac
curacy will be exactly equal to the conventional accuracy [97,98]. Since 
balanced accuracy is the average accuracy of each class, it is unaffected 
by the class imbalance and is more meaningful than the traditional ac
curacy metric. Further, it has the convenient property that an unskilled 
classifier always achieves less than or equal to 1/m accuracy, regardless 
of class imbalance. For example, consider a majority-class classifier, a 
type of unskilled classifier, in the presence of 80% class bias in the 
training set of a 2-class classification task. That unskilled classifier will 
achieve an accuracy equal to the prevalence of the more likely class in 
the test set, roughly 0.8 if the training set was similar to the test set. 
However, the balanced accuracy will be (1 + 0)/2 = 0.5 = 1/m, 
regardless of the class proportions in the test set. 

Although the traditional accuracy metric is a scaled binomial random 
variable, researchers often use a normal posterior distribution to 
compute credible intervals. The assumption behind the posterior normal 
distribution comes from the central limit theorem, where for a suffi
ciently large number of observations (n ≥ 30), a binomial distribution 
can be approximated using the normal distribution. Nonetheless, this 
approximation becomes unreliable for small n. Particularly in the case of 
imbalanced data, the number of observations for the minority class can 
be smaller than the required number for the normal approximation. 
Therefore, finding chance performance and the credible interval of the 
classification rate for balanced accuracy is not as straightforward as it is 
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in the case of traditional accuracy. For the two-class classification case, 
it is a combination of two separate distributions. In a multi-class sce
nario, accuracy in each class will have a separate distribution. 

5.1.1. Credible intervals of balanced accuracy 
If the probability of predicting correct classes of a classifier is 

denoted by A with a prior distribution p(A ), then the posterior is 
expressed as p(A |D ) on observed data D . Let y = 1 and y = 0 represent 
correct and incorrect predictions, respectively. Now the classification 
predictions can be written as y1, y2,…, yn which resembles the results of 
a Bernoulli experiment. So we can write 

p(yk|A )=Bern(yk|p(A )

= A
yk (1 − A )

1− yk
(8) 

If the total number of success (correct predictions) of a Bernoulli trial 
y1, y2,…, yn is c, then it follows a Binomial distribution. 

p(c|A , n)=B(c|A , n)

=

(
n
c

)

A
n(1 − A )

n− c
(9) 

This suggests choosing Beta density as the prior of A since it is the 
conjugate prior of the Binomial distribution. This implies 

p(A )=Beta(A |a, b)
= Beta(A |1, 1)

(10) 

Now the posterior can be written using Bayes theorem as 

p(A |c, n)= p(c|A ,n)p(A )

p(c)

=
B(c|A , n) × Beta(A |1, 1)

p(c)

(11) 

From equation (11), we obtain the posterior 
p(A |c, n)= Beta(A |c+1, n − c+1) and the posterior (1 − α)100% cred
ible interval is [99]. 
[
F− 1

Beta(c+1,n− c+1)(α / 2);F− 1
Beta(c+1,n− c+1)(1 − α / 2)

]
(12)  

where F− 1
Beta(⋅)( ⋅) is the inverse density function of the Beta distribution 

and for 95% credible interval, α = 0.05. In a multiclass scenario, each 
class has the distribution shown in equation (11). To find the posterior of 
the balanced accuracy m − fold convolution is used for m classes. Nu
merical approximations are used to compute the posterior since 
analytical forms are not available for the m − fold convolution. We used 
a MATLAB routine to compute the credible intervals of balanced accuracy 
provided in Ref. [98]. 

5.2. F1 measure 

Another alternative performance evaluation metric is the F1- 
measure which has been used in some papers using the DEAP dataset 
[12,16,23]. The F-measure was originally proposed by Van Rijsbergen 
[100] and is defined as [101]. 

Fβ =
(β2 + 1)PR

β2P + R
(13)  

where P and R denotes precision and recall and are defined as P = tp/
(tp + fp), R = tp/(tp+fn) (tp→ true positive, fp→ false positive, fn→  
false negative). β is a parameter to control balance between P and R. 
When β = 1, F1 becomes the harmonic mean of precision and recall. 
Hence the F1 measure is 

F1 =
2PR

P + R
(14) 

Since P and R are calculated considering one class as a positive class, 
P and R have to be calculated per class and hence the F1 measure as well. 
P and R per class can be calculated in two ways: microaveraging and 

macroaveraging. Microaveraging aggregates the individual true posi
tives, false positives, and false negatives of each classes to calculate the P 
and R. 

miP=

∑m

k=1
Ckk

∑m

k=1
Ckk +

∑m

k=1

∑m

j=1
j∕=k

Cjk  

miR=

∑m

k=1
Ckk

∑m

k=1
Ckk +

∑m

k=1

∑m

j=1
j∕=k

Ckj  

miF1 =
2⋅miP⋅miR
miP + miR

(15) 

An alternative technique is known as macroaveraging. In macro
averaging, P and R are calculated for each class and then the F1 for each 
class is computed using P and R of individual classes. The macroaverage 
is the simple average of individual class F1 scores. 

Pk =
Ckk

Ckk +
∑m

j=0
j∕=k

Cjk

=
Ckk
∑m

j=1
Cjk  

Rk =
Ckk

Ckk +
∑m

j=0
j∕=k

Ckj

=
Ckk
∑m

j=1
Ckj  

maF1 =
1
m
∑m

k=1

2⋅Pk⋅Rk

Pk + Rk
(16) 

The difference between miF1 and maF1 can be significant. Macro
averaging gives equal weight to each class, whereas microaveraging 
gives equal weight to each per-class classification decision. Since the F1 

measure ignores true negatives, the influence of large classes is higher 
than small classes in micro-averaging [102], which runs counter to the 
use of F1 in biased datasets. On the other hand, the F1 measure’s use of 
harmonic means suggest that the averaging should be over the per-class 
classification decision of each instances. In that sense, macro-averaging 
is not consistent with the original definition of the F1 measure [103]. 
Hence, we do not yet have a convincing argument for choosing between 
miF1 and maF1 for multiclass classification. 

6. Results 

Since we have used seventeen different feature sets, it is not feasible 
to show all the results here. To summarize the results, we averaged the 
classification results over all participants for each feature set. Those 
average classification accuracies, and other performance metrics for 
different feature sets, are presented in Fig. 3, Fig. 5 and Table 1. All the 
results are for the SVM classifier, since it outperformed the kNN 
approach. 

6.1. DEAP dataset 

Fig. 3(a) shows the average classification accuracies and balanced 
accuracies on the DEAP for different feature sets using SVM. The mean 
classification accuracies for all features are 0.604, 0.637, and 0.648 for 
valence, arousal, and dominance, respectively. These results are com
parable with the results reported in the original DEAP paper [12] and 
other related studies [16,23], and appear to be above chance perfor
mance. But the balanced accuracies on the right side of Fig. 3(a) show 
very different results. The mean classification rate, in balanced 
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accuracies, for all feature are 0.544, 0.521, and 0.531 for valence, 
arousal and dominance respectively. Only valence recognition appears 
to be much above chance. Notably, the average class bias rate in these 
three dimensions are 0.59, 0.64 and 0.66 for valence, arousal, and 
dominance (Blue colored bars in Fig. 4). 

Fig. 3(b) shows the average macro- and micro-averaged F1 measure 
for different feature sets using SVM. The mean macro-F1 for all feature 
were 0.49, 0.445 and 0.46 for valence, arousal, and dominance, 
respectively. On the contrary, the mean micro-F1 for all features were 
0.59, 0.62 and 0.63 for valence, arousal, and dominance, respectively. 
The best classification rate in the valence dimension was achieved using 
beta band power as a feature, as we found using balanced accuracy. For 
valence, the average across all participants macro-F1 for BetaP feature 
was 0.53 and the micro-F1 was 0.63. For arousal, the average across all 
participants for macro-F1 from the ThetaP feature was 0.48 and the 
micro-F1 was 0.647. For dominance, the average across all participants’ 
macro-F1 for the TBR1 feature was 0.495 and the micro-F1 was 0.67. 
Fig. 4 is included to further illustrate these results. Class bias rate, ac
curacy (Acc), balanced accuracy (BAcc), micro-F1 (miF1), and macro-F1 

(maF1), all these are shown side-by-side using bar plots in Fig. 4. 
Table 1 shows the average balanced accuracies and lower bound of 

the 95% credible intervals of balanced accuracies for different feature 
sets using equation (12). Values are in bold font represents the best 
feature set in terms of classification rate. All results are for the SVM 
classifier. The highest obtained balanced accuracy across all dimensions 
is 0.5732, achieved for valence recognition using beta band power. 
Unfortunately, the average lower limit of the credible intervals, in this 
case, is not above 0.5 (random chance). Though the average provides an 
overall recognition rate, it does not reflect the performance of individual 
participants. Explaining results for all features would be cumbersome; 
here we will explain classification results for each participant for only 
the best feature in each dimension. For valence, beta band power 
worked best. Using this feature, the balanced accuracy obtained for a 
participant (s10) with 0.75 and the lower bound of the credible interval 
is 0.622, which means that the valence classification rate is significantly 
above chance for this participant. Out of 32 participants, balanced ac
curacy is greater than 0.5 for 23 participants. For 8 of these participants, 
the lower bound of the credible interval is greater than 0.5. For arousal, 

Fig. 3. Average classification rate of all participants in high/low recognition of valence, arousal and dominance for different features using the DEAP dataset.  

Table 1 
The average for all participants classification rate, in terms of balanced accuracy (BAcc), with ± standard deviation of the classification rate and the lower bound of the 
95% credible intervals of balanced accuracies for different feature sets. Bold values are representing the maximum classification rate for the corresponding feature set.  

Features Valence Arousal Dominance 

Balanced Lower bound Balanced Lower bound Balanced Lower bound 

Accuracy (BAcc) of BAcc Accuracy (BAcc) of BAcc Accuracy (BAcc) of BAcc 

PASI 0.545 ± 0.090  0.4297 0.528 ± 0.065  0.4227 0.532 ± 0.089  0.4262 
FAI 0.522 ± 0.082  0.4089 0.512 ± 0.058  0.413 0.522 ± 0.070  0.4178 
TBR1 0.548 ± 0.098  0.4267 0.525 ± 0.073  0.4235 0.557 ± 0.08  0.4435 
TBR2 0.538 ± 0.070  0.4198 0.511 ± 0.072  0.4090 0.522 ± 0.066  0.4142 
ThetaP 0.539 ± 0.070  0.4211 0.537 ± 0.076  0.4336 0.530 ± 0.092  0.4206 
AlphaP 0.543 ± 0.078  0.4286 0.524 ± 0.078  0.4281 0.549 ± 0.071  0.4432 
BetaP 0.573 ± 0.093  0.4531 0.530 ± 0.047  0.4263 0.537 ± 0.076  0.4247 
GammaP 0.559 ± 0.096  0.4381 0.528 ± 0.050  0.4265 0.541 ± 0.074  0.4323 
TBR-C 0.566 ± 0.093  0.4482 0.532 ± 0.066  0.4263 0.555 ± 0.084  0.4439 
TABG 0.558 ± 0.071  0.4401 0.509 ± 0.067  0.4122 0.535 ± 0.087  0.4301 
Hjorth 0.532 ±0.101  0.4159 0.527 ± 0.071  0.4268 0.520 ± 0.099  0.4104 
PASI + FASI 0.547 ± 0.087  0.4355 0.521 ± 0.070  0.4207 0.534 ± 0.081  0.4307 
Avg-Entropy 0.516 ± 0.065  0.4177 0.520 ± 0.060  0.4312 0.518 ± 0.064  0.4269 
PSD 0.553 ± 0.091  0.4451 0.515 ± 0.068  0.4259 0.529 ± 0.041  0.4361 
BARatio 0.523 ± 0.073  0.4077 0.502 ± 0.048  0.4054 0.512 ± 0.080  0.4059 
All 0.552 ± 0.078  0.4447 0.507 ± 0.067  0.4178 0.523 ± 0.043  0.4290 
All-PCA 0.537 ± 0.070  0.4160 0.517 ± 0.076  0.4086 0.548 ± 0.090  0.4329  
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theta band power worked best. Using the thetaP feature, the highest 
balanced accuracy obtained for a participant (s17) is 0.73 and the lower 
bound of the credible interval is 0.60, which means the arousal classi
fication rate is significantly above chance for this participant. For 21 
participants, observed balanced accuracy is greater than 0.5. However, 
only 4 participants were the lower bound of the credible interval greater 
than 0.5. For dominance, theta beta-1 ratio worked best. Using TBR1, 
the highest balanced accuracy obtained for a participant (s17) was 0.74 
with a lower bound of 0.61, which means the dominance classification 
rate is significantly above chance for this participant. For 24 

participants, balanced accuracy is greater than 0.5. Yet again, only for 4 
participants was the lower bound of the credible interval greater than 
0.5. 

Table 2 shows the affect recognition rate in terms of balanced ac
curacy, micro- and macro-averaged F1 score, compared with the orig
inal work [12] and some other related studies. Rather than presenting 
the best results in each dimension, we chose to present results for one 
specific feature set for consistency. The results presented under the 
current study are for beta band power (BetaP) feature using an SVM 
classifier. Note that our comparison studies seem to have picked the best 

Fig. 4. Class bias rate and average classification rate of all participants (DEAP data) using accuracy (Acc), balanced accuracy (BAcc), micro-F1 (miF1), and macro-F1 
(maF1) metrics in high/low recognition of valence (features: BetaP), arousal (features: ThetaP) and dominance (features: TBR1). 

Fig. 5. Average classification rate of all participants in high/low recognition of valence, arousal and dominance for different features using BBS data.  

Table 2 
The classification rate in terms of balanced accuracy, micro F1 (miF1) and macro F1 (maF1) scores of affect recognition compared to the DEAP dataset original work 
and related studies. The results shown here are average of all participants using beta band power (BetaP) features.   

Valence Arousal Dominance 

bAcc miF1 maF1 bAcc miF1 maF1 bAcc miF1 maF1 

Koelstra et al. (2012) – – 0.563 – – 0.583 – – – 
[16] – – 0.550 – – 0.570 – – 0.552 
Soleymani et al. (2017) – – 0.645 – – 0.570 – – 0.533 
(Clerico et al., 2018) 0.604 – – 0.583 – – 0.564 – – 
Current study 0.573 0.610 0.530 0.530 0.620 0.460 0.537 0.630 0.460  
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result in each dimension for their reported results (though only Clerico 
et al. [24] unambiguously stated this). 

6.2. Data at BBS lab 

The data collected at the BBS lab using IAPS came from seven par
ticipants. For 2-class classification, the average class-biases were 0.60, 
0.72, and 0.82 for valence, arousal, and dominance, respectively. For 
valence with SVM, the best 2-class classification results were obtained 
using gamma-band power considering the average of all participants. 
The obtained accuracy was 0.62 and the balanced accuracy was 0.54. 
The macro- and micro-averaged F1 scores were 0.49 and 0.60, 
respectively. 

For arousal with SVM, the best 2-class classification results were 
obtained using the power asymmetry index (PASI) considering the 
average of all participants. The obtained accuracy was 0.73 and the 
balanced accuracy was 0.54. The macro- and micro-averaged F1 scores 
were 0.50 and 0.71, respectively. 

For dominance with SVM, the best 2-class classification results were 
obtained using beta band power considering the average of all partici
pants. The obtained accuracy was 0.82 and the balanced accuracy was 
0.52. The macro- and micro-averaged F1 scores were 0.46 and 0.82, 
respectively. 

7. Discussion 

For the DEAP, the average class bias or majority class percentage in a 
2-class classification scenario for valence, arousal and dominance are 
0.59, 0.64 and 0.66 respectively. We have argued that class imbalance is 
important to understand the results of the classifier and should be re
ported. Performance metrics that include or account the class-biases are 
thus preferred to use. Any metric that ignores class imbalance will 
mislead readers. To illustrate this, consider the results from Table 1 
where balanced accuracy and the lower bound of the 95% credible in
terval are presented for different feature sets for DEAP data using SVM. 
The best average classification accuracy for all participants in the 
valence dimension was 0.602 using beta band power as a feature, 
whereas the balanced accuracy, for this case, was 0.573. Without 
knowing the class bias and considering the accuracy metric, one might 
think the result is promising. But the lower bound of the 95% credible 
interval of balanced accuracy is below 0.5, so the classification rate 
cannot be claimed as statistically significant. 

However, class imbalance for each participant for all three- 
dimension (valence, arousal, dominance) would be cumbersome and 
impractical to report. The biases mentioned earlier were averaged across 
all participants. Since affective state estimation is a participant-specific 
task, averaged results do not reflect individual performances. So com
parisons using average results are not meaningful. Hence, we need 
something else which can address both the class imbalance problem and 
make the average performance meaningful. Considering those above- 
mentioned problems, balanced accuracy is a promising candidate 
since the baseline performance for balance accuracy is the same (50%) 
across all dimensions(valence, arousal, dominance) for all participants. 
Thus, balanced accuracy will make results easier to understand and 
compare. For example, just looking at the results in Table 1, we can 
easily conclude that the valence recognition rate is better than arousal 
and dominance recognition. Statistical comparison between the 
balanced accuracies for valence, arousal and dominance presented in 
Table 1 was done by using the MATLAB inbuilt function ttest2. Two- 
sample t-test resulted in the rejection of the null hypothesis (two groups 
are equal) when comparing valence and arousal. The valence recogni
tion rate is significantly better than the arousal and dominance recog
nition rate with adjusted p-values 0.035 and 7.44e− 06. The dominance 
recognition rate is also significantly better than arousal with adjusted p- 
value of 0.031. These three two-sample t-tests suggest that valence has 
the highest recognition rate and arousal has the lowest for the DEAP 

dataset. 
Averages for all participants of the balanced accuracies, macro, and 

micro F1 measure are compared with other related studies in Table 2. 
Since they have not discussed the methods of statistical analysis, here we 
will use our obtained results shown in Table 1 for discussion. Our 
average balanced accuracies are very similar to the highest balanced 
accuracy reported in Refs. [24]. In Ref. [24], it has been claimed that all 
the reported balanced accuracies were better than random voting clas
sifiers with p < 0.05. This statement is true if we perform statistical 
analysis considering results from all participants as a group rather than 
individual participants. The number of participants with balanced ac
curacy above 0.5 is 25 for valence using all frequency band powers, 21 
for arousal and 20 for dominance. In this case the probability that 
overall balanced accuracy is above chance are 0.66, 0.66 and 0.63 with 
intervals (0.47 − 0.82), (0.47 − 0.82), and (0.44 − 0.79) for valence, 
arousal and dominance, respectively. But the significance of the exper
iment as a whole does not capture the significance of each participant’s 
performance. Hence, just based on these statistics we are not comfort
able to claim the accuracies are above chance. Rather we suggest using 
the probability of individual participants’ performances being above 
chance to claim the results are significant. Using the number of partic
ipants that are significantly above chance, we have 6 for valence, 3 for 
arousal and 4 for dominance out of 32 participants. That tells us that the 
probabilities of a participant’s classification accuracy being significantly 
above chance for valence, arousal and dominance are 0.19, 0.09 and 
0.13 bounded by (0.07 − 0.36), (0.02 − 0.25) and (0.04 − .29), 
respectively. These are not very encouraging, as valence is only above 
the typical 0.05 threshold. This low rate of significant performance may 
be of concern for the EEG-based affective computing community, and as 
a community, we need to be more careful while reporting results. 

8. Conclusion 

We presented the experimental results for affective state estimation 
using the publicly available DEAP database and our lab data. We 
compared our results for DEAP data with the results reported in a few 
related studies. We used various features mentioned in the literature and 
also investigated theta-beta1 ratio as a novel feature for affect classifi
cation. Our findings showed that the beta band power is the most suit
able for valence classification, theta band power for arousal 
classification, and theta beta-1 ratio for dominance classification. 

In conclusion, we suggest using balanced accuracy and its posterior 
distribution as the performance evaluation metric for emotion estima
tion. Although F1 measure is a popular choice, it is not yet well estab
lished which F1 measure (macro/micro) we should use for multiclass 
classification. As our results demonstrate, that choice is important. 
Further, if macro-averaging is chosen, the statistical significance of the 
metric is not well understood. 

In contrast to the F1 measure, balanced accuracy has several ad
vantages. First, balanced accuracy does not have a "preferred class” and 
is thus comparable between groups. Second, the credible bounds can be 
calculated using known formulas. Third, the extension to large numbers 
of classes is straightforward. Fourth and finally, balanced accuracy is 
insensitive to class bias and always has the intuitive 1/m chance per
formance for unskilled classifiers. 

We note that traditional accuracy metrics would have classified the 
performance of many more of our participants as statistically significant, 
relative to the number classified this way by balanced accuracy. 
Nevertheless, we maintain that balanced accuracy is far less misleading, 
and that the traditional accuracy metric substantially over-estimates 
performance is these unbalanced datasets. 
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[31] P. Ackermann, C. Kohlschein, J.Á. Bitsch, K. Wehrle, S. Jeschke, Eeg-based 
automatic emotion recognition: feature extraction, selection and classification 
methods, in: 2016 IEEE 18th International Conference on E-Health Networking, 
Applications and Services (Healthcom), IEEE, 2016, pp. 1–6. 

[32] H. Xu, K.N. Plataniotis, Affective states classification using eeg and semi- 
supervised deep learning approaches, in: 2016 IEEE 18th International Workshop 
on Multimedia Signal Processing (MMSP), IEEE, 2016, pp. 1–6. 

[33] S. Wu, S. Wang, Y. Zhu, Z. Gao, L. Yue, Q. Ji, Employing subjects’ information as 
privileged information for emotion recognition from eeg signals, in: 2016 23rd 
International Conference on Pattern Recognition (ICPR), IEEE, 2016, 
pp. 301–306. 

[34] R. Al-Fahad, M. Yeasin, Robust modeling of continuous 4-d affective space from 
eeg recording, in: 2016 15th IEEE International Conference on Machine Learning 
and Applications (ICMLA), IEEE, 2016, pp. 1040–1045. 

[35] T. Chen, S. Wang, Z. Gao, C. Wu, Emotion recognition from eeg signals enhanced 
by user’s profile, in: Proceedings of the 2016 ACM on International Conference on 
Multimedia Retrieval, 2016, pp. 277–280. 

[36] Y. Shu, S. Wang, Emotion recognition through integrating eeg and peripheral 
signals, in: 2017 IEEE International Conference on Acoustics, Speech and Signal 
Processing (ICASSP), IEEE, 2017, pp. 2871–2875. 
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